An autocrine role for pituitary GABA: activation of GABA-B receptors and regulation of growth hormone levels.
نویسندگان
چکیده
There is increasing evidence suggesting that the neurotransmitter gamma-aminobutyric acid (GABA) is a local factor involved in the regulation of endocrine organs. Examples of such functions are documented in the pancreas, but recent results suggest that GABA may act in a similar way in the pituitary, in which GABA receptors are expressed and pituitary growth hormone (GH) cells provide a source of GABA. We hypothesised that GABA secreted in somatotropes may act as an autoregulatory signaling molecule. To test this hypothesis we first examined the nature of GABA receptors expressed by GH cells. RT-PCR analysis demonstrated that GABA-B receptor subunits R1 and R2 are present in the whole rat pituitary. Laser microdissection of immunostained GH cells, followed by RT-PCR as well as immunoelectron microscopy, showed that GABA-B receptors are expressed on somatotropes. To investigate GABA-B receptor function in somatotropes, we used rat GH3 adenoma cells, which, like pituitary GH cells, express GABA-B R1 and R2 (as assessed by RT-PCR and immunoelectron microscopy) and produce GABA (checked by high performance liquid chromatography). After inhibition of endogenous GABA synthesis, GH production was stimulated by baclofen, a chromatography). After inhibition of endogenous GABA synthesis, GH production was stimulated by baclofen, a GABA-B receptor agonist. By contrast, blocking GABA-B receptors by an antagonist, phaclofen, decreased GH levels. We conclude that in GH-producing cells, GABA acts as an autocrine factor via GABA-B receptors to control GH levels.
منابع مشابه
P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کاملEvaluation of GABA Receptors of Ventral Tegmental Area in Cardiovascular Responses in Rat
Background: The ventral tegmental area (VTA) is well known for its role in cardiovascular control. It is demonstrated that about 20-30% of the VTA neurons are GABAergic though their role in cardiovascular control is not yet understood. This study is carried out to find the effects of GABA A and GABA B receptors on cardiovascular response of the VTA. Methods: Experiments were performed on uretha...
متن کاملEffect of intracerebroventricular injection of GABA receptors antagonists on morphine-induced changes in GABA and GLU transmission within the mPFC: an in vivo microdialysis study
Objective(s): Many studies have focused on ventral tegmental area than of other mesocorticolimbic areas, and implicated a key role for the medial prefrontal cortex (mPFC) in the development of addictive behaviors. So far, the role of gamma-aminobutyric acid (GABA) receptors in the discriminative properties of morphine has received little attention and few studies evaluated the role of these rec...
متن کاملAcute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors
Objective(s): Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nit...
متن کاملThe reciprocal regulation of stress hormones and GABAA receptors
Stress-derived steroid hormones regulate the expression and function of GABA(A) receptors (GABA(A)Rs). Changes in GABA(A)R subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABA(A)R subunit expression, stress ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroendocrinology
دوره 76 3 شماره
صفحات -
تاریخ انتشار 2002